月月娱乐说
当前位置:首页 - 古文 >

为什么说量化投资是一群最聪明人玩的游戏?

2019-07-08来源:浙江网

量化投资该怎么玩?


收益这个变量本身随机且极难预测,研究的重点,要放在期望收益上,也就是从概率意义上以及大样本意义上的期望水平,而与收益相对应的是风险。


一般来说,更高的风险必须对应着更高的收益作为风险的补偿。


本文作者认为超额收益的主要来源,其实归根结底分为两类,一类是利用市场一定时间内的无效性或者别人犯的错误,这是很多价值投资或套利投资的基本逻辑来源。另一类就是这种投资行为的超额收益是承担了某种风险的风险溢价,比如说volatility selling 或者sell options, 就可以归为这种。


扑克投资家认为,获取超额收益还有一个重要来源,即利用信息鸿沟,也就是说在获取信息上具有较快速度。但是,在做投资分析时,务必保证数据的正确,任何的错漏都有可能造成巨大损失。


除此之外,做量化投资还应该注意什么呢?


今天我主要围绕量化投资,结合自己以及我们团队在量化投资领域的实践经验,以及一些经典的理论知识,尝试性地为大家梳理量化投资的方法论体系,希望为大家在量化投资领域产生一些新的认识提供一些帮助。


我们先从几个在量化投资中经常遇到的小问题出发,然后逐渐深入思考量化投资的几个基本方法和原则。这些问题或许没有统一的标准答案,我也不会给出具体的答案,这里提出的主要目的是引起大家思考。


首先第一个问题是如何定义与看待期望收益与风险?


这可以说是投资领域的终极问题。这个问题很大程度上决定了你如何做策略的研发,如果管理风险,以及如何进行资产配置等关键问题。


首先,到目前大家已经比较能够一致认同的就是,收益这个变量本身是随机的,不确定的,而且极难预测,因此单纯谈论收益,从长期的系统化投资角度讲,意义不大,一次两次赚多少钱跟你的系统化投资没有太大关系,而研究的重点,要放在期望收益上,也就是从概率意义上以及大样本意义上的期望水平。与收益相对应的是风险,如何定义风险也是有着不同的版本。


一种简单的定义可以是波动率,或下行波动率,但是这并不能包含市场中的大部分主要风险,比如说流动性风险,再比如说即使只考虑波动率或亏损,在bad times的时候,某个资产或某个策略的大幅亏损对投资者的整个系统化投资的危害程度一般也会更高,而在good times的时候,同样的亏损或波动率或许对整个系统的危害程度没有那么高,这一点通过市场溢价的水平就可以看出来:比如说市场总是倾向于给予out of money的期权更高的溢价(波动率微笑特征),或者在大部分时间内给予小市值高成长股票更高的风险溢价(然而在股市出现系统性崩盘时,这类股票的跌幅往往也是最大的),这些都是市场在表达对风险的不同对待的现象。


第二个问题是期望收益来自哪里?


这是做策略投研的一个核心问题,你首先要有一个基本的逻辑作为引导,来开发你的策略,然后再运用数据和模型进行去伪存真,抽丝剥茧的分析,但是在这个过程中,逻辑是必不可少的一个主线,那么这个逻辑就是你思考的期望收益的来源。有的人从不同资产类别的角度理解期望收益来源,去比较股票,债券,商品等不同资产类别的收益贡献,那么这就是朝着大类资产配置和组合的角度去理解投资,这里面做得好,也是可以做出比全市场平均配置更好的投资方案的。还有一些人,通过策略风格角度理解收益的来源,比如趋势类策略贡献多少收益,波动率类策略贡献多少收益,那么这便是从策略风格或种类的角度去分析,也可以成为一套体系。


但是这些都是分析的角度,最终仍然没有根本性回答你的超额收益来自哪里的问题。比如说趋势策略,为什么就会有超额收益呢?或者说股票,为什么相对于债券有超额收益呢?从这个层次上,我认为超额收益的主要来源,其实归根结底分为两类,一类是利用市场一定时间内的无效性或者别人犯的错误,这是很多价值投资或套利投资的基本逻辑来源。另一类就是这种投资行为的超额收益是承担了某种风险的风险溢价,比如说volatility selling 或者sell options, 就可以归为这种。


卖出波动率或卖出期权,其实相当于卖保险,是在承担一些小概率的高风险,这些小概率事件可能很久都不会发生,于是投资人通过卖期权可能在很长一段时间内获得稳定的收益,但是一旦小概率事件发生,那么到时候产生的亏损,也往往是致命的。再比如说针对一些流动性极差的资产的做市策略,往往也可以获利丰厚,但是这是因为在这种资产中做市交易承担了更多的流动性风险,这种风险处理稍有不慎就可能导致严重亏损,所以在这种资产中做市的收益才会显得比较高,但是前提是你了解清楚这个风险溢价的来源,并有技巧可以合理的化解他,或者比别人能够在这方面做的更好,否则的话,从长期看,你的期望收益未必是很高的。


基本上市场上大部分的非高频系统化投资策略的稳定超额收益的来源,往往都与上述两个方面有关,现在市场变得越来越有效,所以其实第一种收益来源的机会逐渐变得越来越少,越来越难以抓住,而第二种收益的来源,是可以长期存在的,但是第二种收益的来源,往往是风险溢价,他并不是免费午餐,这一点是要牢记的。所以不要以为你的投资系统连续7年或10年都可以稳定盈利,你就可以高枕无忧,其实或许只是你承担的风险事件,还没有到来而已,如果对于这些风险,你无法做到比别人更好的管理,那么这个游戏长久的进行下去,迟早有一天属于你的黑天鹅会到来,而且到来的频率越低,越往往会是一次性致命的。


第三个问题是一个策略被很多人知道了以后,是否就不赚钱了呢?


接着上面的那个问题的思路继续讲,如果你的这个策略的收益来源主要是通过市场的无效性获益,那么确实当更多人知道了这一点并参与进来,你的获利空间也就越来越小。但是如果你的策略的收益来源是第二种,那么其实即使很多人知道了,也未必会导致它不赚钱,当然,正如上面我们提到的,这样的收益,其所承担的风险,你也是需要有很清醒的认识的,并可以合理的管理这个风险,所以从这个角度叫,盈亏同源是有道理的,好多人说的盈亏同源,其实往往就是指第二种的这个收益。


第四个问题是如何评价一个投资系统或策略的好与坏?


或者如何评价一个基金的好与坏?这个问题也是仁者见仁智者见智了,但是据我所了解,很悲观的是,最后很难有一种方法能够非常准确与客观并长期有效。比如说历史业绩,这当然是一个重要的指标,但是历史业绩的好与坏一定与未来正相关吗?有时是的,但有时可以是反过来的。


比如一个策略或基金,在商品期货市场今年下半年的趋势行情中,不到一两个月就赚了超过30%的收益的话,这当然是不错的业绩,但是根据此,就购买这只基金并期望明年获得类似的收益,是合理的吗?仔细想想,其实不合理。因为一个策略或者基金能够在短时间内获取如此高的收益,恰恰说明他的策略风格是明确的,单一的,投资的观点是相对激进的,比如说他全部都是趋势类的策略思路,而且还用了比较高的杠杆,那么继续坚持这样的投资策略或思路的话,假如明年市场陷入无序的震荡,他可能就会亏大钱了。


当然你可以争论说明年或许还是趋势行情,但我觉得这方面除非你有非常合理的具体的模型来预测,并且确实证明长期有效,否则我是不觉得你可以准确预测明年的市场结构的(历史上多次证明华尔街大部分专业机构和交易者对于未来一年的市场的预测往往都是大概率错误的)。你也可以说,这个策略很智能,或者这个基金经理很智能,他们总是能在趋势来的时候做趋势交易,震荡市场来了就知道做震荡,市场中是否存在这样的高手长年可以准确判断并切换的?


我觉得天才可能是有的,但是你遇到的概率是比较低的,一个理性的投资者,不应该基于一个假设就是自己是全市场最聪明或者全市场最幸运的一个,来进行投资。这样的心态下,大概率投资生涯会比较短。人在面对市场的时候,谦虚一点,保守一点总是更好的,即使你很看好趋势行情,也要为非趋势行情的市场做足准备,不要总是假设自己很聪明,可以做很多预测,然后在不同子策略或子基金之间来回选择切换做择时,事实往往是残酷的,那就是你这么做之后发现其实自己是比较蠢的那一个,择时起到反作用,你觉得这个基金该赚钱了,或者这个策略该赚钱了,然后想去抄底的,结果反而不如人家一直呆在里面的或者一直在外面的。


所以从这个角度讲,即使很多的专业机构,做的也不够好。最近FOF在国内非常火爆,可是我要做一个悲观的预言就是目前市场上已经做FOF或者成立的FOF,其中绝大多数的寿命可能都不会超过3年,这个跟在股市里散户十人九亏是一个道理,心态没摆正,机构并不会比散户做的更好。好多FOF基本就是看着历史业绩选子基金,业绩好的买进入,差了的就赎回,其他的思考能力很差,对市场的理解很差,对策略的把握也不行,那么几年下来大家就会发现他这个FOF还不如平均的买入那几个子基金然后抱着不动的结果好,那么可想而知他的结果了。


所以说,投资策略评价是一门很高深的学问,不是说你看几个指标,算一算夏普率,比一比最大回撤,然后答案就确定了。我的观点是,做策略评价的人,做FOF的人,选子基金的人,他做交易或者投资研发的能力,得比那些做策略的人,做子基金的人,水平更高,这样才能选的好。你一个子策略能做好,一个子基金能做好,才能够考虑怎么做好多个子基金的搭配,多个子策略的组合,一个都搞不好就想搞多个,没当好徒弟就想做师傅,往往事与愿违,可惜现在的市场实际情况看,是反过来的,这导致我对整个FOF行业的每个FOF基金的寿命长短,不表示乐观。


最后一个小问题,引出我今天的主题,也就是怎么样才能做出赚钱的量化投资策略?


一个人,从科班出身的统计学博士,或者计算机/数学/经济专家,到一个优秀的可以稳定贡献优质量化策略的quant或基金经理,中间究竟差了哪些,需要哪些步骤? 为了回答这个问题,以及上述几个问题,我今天斗胆尝试性地与大家分享,量化投资的方法论体系。


我理解的量化投资方法论,有以下四个维度:


  • 投资的三面魔方:资产类别,风险因子,策略风格


  • 投资的三套理论:资产定价模型,投资组合理论,有效市场假说


  • 量化的两个载体:数据,人


  • 决策的两个维度:收益,风险


下面我们来分别逐一讨论这四个维度。


首先我们来看中间的这个正方体,也就是投资的三面魔方。




这个正方体不是我发明的,是来自于Antti Ilmanen 写的Expected Returns这本书。这本书中针对资产类别,风险因子,策略风格三大方面,对期望收益进行了不同视 的深度阐述,是值得仔细去研读的一本书。在这里我简单的总结下这本书里的一些主要观点。这三大方面里面,大家最常见的就是资产类别这个方面。


资产类别一般可以分为股票类资产,信用类资产,国债类资产,以及另类资产(比如商品期货,房地产,艺术品等都可以属于这类)。大家可以看到这里显示的是过去二十年股票市场的年化收益情况,可以看到大部分年份的平均收益在5%左右,年化的夏普率大概不到0.5,那么这就让大家有了一个基本的概念,就是在股票市场中你平均可以预期的收益大概在什么水平,以及为此要承担多少的风险或者波动。


当然,优秀的投资者可以获取远超过市场平均水平的收益,但是作为一个参考的基本标准,过去几十年的股市平均收益情况,给了大家一个基本的心理预期。如果你的心里预期收益相对于这个参考标准过于高,而所愿意承担的风险又过于低,那就要考虑是否是过于理想主义了,或者说这就对你的投资策略的水平有了很高的要求。接下来这几页给出了一些信用类衍生品,公司债,国债以及商品的历史表现情况,整体看各类资产的收益水平长期看是比较接近的,有的平均收益高一些,有的平均收益低一些,但是平均收益低的资产夏普率往往并不低,所以在衡量期望收益的同时还要考虑到风险的水平。


那么除了资产类别这个角度,还有另外两个重要的角度来分析和理解期望收益与风险。那就是策略风格角度和风险因子角度。这里列出了跨市场长期验证比较有效的几类策略的风格,趋势类,价值类,carry,以及波动率交易。这四种思路或者逻辑可以说囊括了市场中绝大多数的量化策略,同时他们彼此之间的相关性也比较低,逻辑各有不同。


价值投资类策略,在股市中是应用最多的,比如下面这个图,就显示了一个非常简单的根据市净率和市盈率指标构建的价值投资策略在美股上的历史表现,可以看到从1929年开始一直到2009年,每一个时间段内,价值投资组合的表现都要比大盘的整体表现要更好,那么这样快100年的规律,同时又是极其简单的策略逻辑和变量,使得人们可以一定程度上相信,价值投资策略确实是可以产生超额收益的。那么如果你进一步深入的去想,价值投资策略究竟赚的什么钱呢?


回头我开始讲的第二个问题,就是收益的来源问题,当时提出了两个基本方面,一个是市场的无效或错误定价,一个是风险溢价,那么其实价值投资策略在这两个方面,都可以得到一些论证。一些被严重低估或高估的股票,一定程度上是市场错误定价的反映,这个是可以用来赚钱的。而价值类策略,在熊市或者市场低迷甚至崩盘的时期表现尤其好,可能体现的是风险溢价,因为当时环境下,整个市场的风险情绪变得非常低迷,绝大多数投资人都变得非常不愿意承担风险,那么这时候你愿意承担一定程度的风险,这种行为可以获得一定程度的风险溢价补偿。



Reference: Expected Returns, Antti Ilmanen


Carry策略,最常见于外汇交易,利用不同国家货币的利率高低之差进行套利。下面这个图显示的是不同货币的存款利率相对美元的存款利率的差值以及对应的该货币相对美元的超额收益。我们可以清晰的看到一个明显的规律,那就是存款利率相对美元存款利率高的货币,他的收益也相对美元更高,这种现象在中长期时间窗口下过去持续有效,由此验证了carry交易思路的合理性。


但是需要强调的是,如果放在不同的时间窗口下看,结果可以大不一样,如果你以一个月或者一周的时间窗口去看,那么carry的表现就没有那么明显和稳定。Carry策略的合理性,也可以在逻辑上有明确的解释,所以这样的策略,如果运用得当,设计的巧妙,不失为一种可以长期依赖的好的策略思路之一。



Reference: Expected Returns, Antti Ilmanen


Trend 策略,在商品期货交易中被提及的最多。大家可以看到下图中商品期货趋势性指数,过去几十年的时间内连续保持了稳定的收益能力,这其实很让人匪夷所思。要知道图中的这个趋势性指数,他的计算方法是完全公开的,是定时公布数值的,可以说是市场公开化的秘密,不存在什么神秘的部分,而且计算方法非常简单,基本上就是根据过去9到12个月不同商品期货的return,做多收益高的,做空收益最低的那些,就这样简单组合而来的。


那么这么简单的思路,广为人知的策略,为何连续几十年一直保持了超出市场平均水平或指数的收益呢?为何保持了相对比较好的夏普率呢?这其实不是一个很好回答的问题,有的人尝试在市场无效性角度找理由,有的人尝试用风险溢价的角度去理解,但是都有一定道理但又感觉不是非常充分,这说明这个市场中,还有很多非常普遍和简单的规律,是我们现在的金融学理论,还未能很好的解释的,这也是金融和投资的魅力所在。


现在比较流行的是通过市场行为学的角度去理解,说投资者一般习惯于低估已发生事件的长远影响与意义,而对于这种低估的矫正,又是一个逐渐的过程,有一种心理上的不情愿。还有一点就是投资者往往在发生大额亏损之后反而变得更加激进,而对于小额的亏损反而比较倾向于止损,这样的心态助推了市场中追涨杀跌的效应,从而对趋势形成一种增强。这都有一定道理,不同的投资者专注不同的方面去理解,那么你理解的角度不同,你做出的趋势交易策略的逻辑也就不同,最后到市场中去检验,怎样的逻辑和策略是更加经得住考验。说到趋势类策略,这里多说几句,趋势类策略,在我看来,难的不是在趋势市场中赚到钱,这个很容易,用两条均线就可以做到。


难的是在漫长的没有趋势的市场中,如何控制你的亏损,你不要以为系统里面设了止损就万事无忧了,你也可以连续止损,最后还是亏很多,这其实是一个中长期最大化收益,与短周期内最小化损失这样两个相互矛盾的目标的优化平衡问题,这个平衡问题做的好,那么你的趋势类策略就基本合格了,做不好,那么收益高的时候可以很高,但是亏得时候一样可以很惨。一旦你意识到这个问题的存在,那么如何用量化的方法和手段来解决,反而不是太难的事情,这样的优化问题,在数学上是可以很好的定义的,前人也都已经做出了很好的理论来解决,你只需要去找到他就是了,这个工作,对于数理背景很扎实的quant人员,反而不是多么困难的事情。


当然,趋势类策略还有一些细节技巧比如在趋势的中后期,波动率比较高的时候适当降低仓位等等,可以进一步平滑你的收益曲线,提高整体的夏普率等,这些都是做量化投研工作中的一些细节,细节做得足够好,能够进一步提高你的收益能力。现在专业量化对冲基金公司中的quant,很多的时间也都花在去寻找和处理这些细节上。



Reference: Expected Returns, Antti Ilmanen


波动率策略,在期权市场中最经常被提到。波动率套利,做多波动率,做空波动率,利用期权组合,你可以构建上述各种交易策略。这类策略的好处在于他一般不爆露单边趋势性风险,可以是趋势类策略的很好的补充,但是他也有他的风险。比如做空波动率,或者卖出OTM的期权的策略,在很长时间内可能都是比较稳定盈利的,但是一旦黑天鹅事件发生,你卖出的OTM期权被行权,那么你就面临大额的亏损。


这个现象在下图中可以得到明显的体现。比如下面图中这个covered call writing 的策略以及其他几个类似策略,在美股市场从2001年到2007年有着很好的收益曲线,但是在2008年金融危机时,所发生的亏损相当于过去7年收益的总和,相当于过去7年白做了。这个例子就是典型的第二种收益来源,就是风险溢价,在平时一直给你很好的风险溢价收益,但是这不是免费的,等到风险来的时候,你会发现这个溢价,其实不便宜。


所以说,评价一个策略不要以为仅仅看看历史收益就可以了,连续七年稳定实盘收益的策略或基金,也可能一朝把你带入死亡之地,更何况现在国内很多机构评价量化策略的时候,都还拿不到7年的历史实盘业绩,国内产品业绩有3年以上的算不错了,可是7年甚至10年的业绩,都不一定可以完全确保你未来重复这个收益水平。要注意这种现象可不仅仅存在于期权交易市场,其实股票策略,阿尔法策略,CTA策略,都可以有类似的例子,所以大家对这个一定要慎之又慎,这个策略评价问题,远比你想象的要复杂的多。



Reference: Expected Returns, Antti Ilmanen


最后在策略风格这个方面,再补充一点的是,上面几个策略种类之所以拿出来讲,就是看重他们的另一个优点:普适性。趋势策略不仅可以用于商品,还可以用于股票或债券,Carry策略在股市和期货也可以有对应。


有人问carry怎么对应?这个你要发挥一点想象力和举一反三,抓住carry的本质,你会发现其实carry在商品中对应的就是现货和期货,或者近远月期货合约的基差,也就是所谓的升贴水,在股市中,高carry可以对应为高股息的股票,那么对应的策 转载文章地址:http://www.stormwatercanada.com/guwen/344.html
(本文来自月月娱乐说整合文章:http://www.stormwatercanada.com)未经允许,不得转载!

标签:
相关推荐
网站简介 联系我们 网站申明 网站地图

版权所有:www.stormwatercanada.com ©2017 月月娱乐说

月月娱乐说提供的所有内容均是网络转载或网友提供,本站仅提供内容展示服务,不承认任何法律责任。